Algae
Algae may have provided scientists with a blueprint for where sexes in plants and animals originated Wiki Commons

American researchers have discovered the genetic origin of distinct male and female sexes using green algae, showing how they evolved from a more primitive mating system in a single-celled relative.

A team of scientists led by James Umen of the Enterprise Institute for Renewable Fuels at the Danforth Plant Science Center identified the master regulatory gene for sex determination in the alga Volvox carteri.

They discovered that it has acquired new functions compared to a related gene in its close relative, the unicellular alga Chlamydomonas reinhardtii, which does not have physically distinguishable sexes.

Their findings are publishing in the journal PLOS Biology and may provide a blueprint for how sexes in other multicellular organisms like plants and animals may have originated.

For plants and animals, having male and female reproductive cells or gametes is the norm and the differences between the two types of gametes are obvious. Male gametes are small motile sperm or pollen, while female gametes are large egg cells.

However, the evolutionary origins of male and female sexes are unclear because the distant unicellular relatives of plants, animals and other multicellular species ordinarily do not have distinct sexes. Instead, they have mating types - a system in which gametes of one mating type can only fuse with those with a different mating type, but the cells of each mating type are indistinguishable from each other in size and morphology.

Unlike the case in plants and animals whose unicellular ancestors are very distantly related, male and female sexes in Volvox evolved relatively recently from mating types in an ancestor that was similar to Chlamydomonas.

During a previous study, Umen and his team had identified a gene in Volvox males called MID, whose counterpart in Chlamydomonas was known to control differentiation of its two mating types called "plus" and "minus".

By forcing genetically female Volvox to express MID, the researchers were able to convert what would have been egg cells into packets of functional sperm cells.

Conversely, by using a method of gene inactivation called RNA interference (RNAi), the Danforth scientists were able to block MID expression in genetic males causing them to develop with functional eggs in place of their sperm packets.

They were even able to use their gender-swapped strains to carry out successful matings between pairs of genetically male or genetically female Volvox. Importantly, even though the MID genes from the two species of algae are related, the Chlamydomonas MID gene was unable to substitute for Volvox MID.

The discovery of a master regulatory gene for sexes and mating types in this group of green algae shows that these two forms of reproduction share a common genetic origin, and hint that a similar evolutionary scenario may underlie the origin of sexes in animals, plants and other multicellular lineages.

"The identification of a conserved regulatory gene that controls sex and mating in the algae may lead to clues about how sex is controlled in other related groups of algae that are used for biotechnological applications," Umen said.